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Université Montpellier II, 34095 Montpellier Cedex 05, France

Received 1 March 2009, in final form 14 April 2009
Published 28 July 2009
Online at stacks.iop.org/JPhysA/42/335402

Abstract
We present some results on instanton corrections to the hypermultiplet moduli
space in Calabi–Yau compactifications of type-II string theories. Previously,
using twistor methods, only a class of D-instantons (D2-instantons wrapping
A-cycles) was incorporated exactly and the rest was treated only linearly. We
go beyond the linear approximation and give a set of holomorphic functions
which, through a known procedure, capture the effect of D-instantons at all
orders. Moreover, we show that for a sector where all instanton charges have
vanishing symplectic invariant scalar product, the hypermultiplet metric can be
computed explicitly.

PACS numbers: 11.25.Uv, 11.25.Mj

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Compactifications of type-II string theories on Calabi–Yau (CY) threefold yield N = 2
supergravity coupled to vector multiplets (VM) and hypermultiplets (HM). At the two-
derivative level in the effective action, the moduli spaces of these two sectors are decoupled
and can be described independently. The vector multiplets are well known to be described by a
special Kähler geometry, which can be conveniently encoded into a holomorphic prepotential.
The hypermultiplet sector is much more complicated in two aspects. First, supersymmetry
restricts it to be described by the so-called quaternion–Kähler (QK) geometry [1]. Contrary to
the Kähler geometry, QK spaces are not described by any potential and thus it is difficult
to parametrize them in a simple way. Second, since the HM include the dilaton, the
effective action in the hypermultiplet sector receives corrections in the string coupling gs ,
both perturbative and non-perturbative. The non-perturbative corrections are related to D-
instantons arising as D-branes wrapping non-trivial cycles on the internal CY [2]. But due to
the lack of a well-established instanton calculus in string theory, the direct calculation of such
D-instanton corrections seems to be a very hard task. As a result, the exact metric on the HM
moduli space remains still unknown and represents a great challenge in string theory.
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Recently, large progress in this direction has been achieved. A crucial step was provided
by understanding how to overcome the first of the above-mentioned problems. Namely, it was
realized that a suitable parametrization of QK spaces can be found using the so-called twistor
techniques [3, 4], which in the physics literature appeared as the projective superspace method
[5–9].

In particular, it was known for long time that 4d-dimensional QK manifolds M are in
one-to-one correspondence with 4d+ four-dimensional hyper-Kähler (HK) cones, or Swann
bundles S [4], which are hyper-Kähler manifolds with an additional homothetic Killing vector
and an isometric SU(2) action. The geometry of a HK manifold in turn can be encoded
into the complex symplectic structure on its twistor space ZS . It turns out that the latter is
characterized by a set of holomorphic functions, which generate symplectomorphisms between
local Darboux coordinates in various patches covering the twistor space [10]. These functions
play the same role for the HK geometry as the holomorphic prepotential for the special Kähler
geometry. However, the additional structure of the HK cone imposes some restrictions on
these transition functions, which allow one to descend to the twistor space Z of the initial
QK manifold [11]. As a result, the QK geometry can be obtained directly from the complex
contact structure on Z [12] and is characterized by a related set of holomorphic functions
interpreted now as complex contact transformations between different locally flat patches.

On the other hand, the absence of string instanton calculus was overcome by applying
various non-perturbative (self)dualities of type-IIA and type-IIB string theories. In this way,
applying SL(2, Z) self-duality of type-IIB string theory to the perturbative HM metric found
before in [13–15] (see also [16–20] for some earlier work), the authors of [21] were able
to compute the D(-1) and D1-instanton corrections. Mirror symmetry further maps these
corrections into D2-brane instantons of type-IIA theory compactified on the mirror CY
threefold X [22]. However, this map recovers only instantons wrapping A-cycles in some
symplectic polarization of H3(X). The contributions of other D2 instantons may then be
restored using the symplectic invariance of type-IIA theory [23].

For these developments, the twistor and projective techniques mentioned above were
indispensable since they allowed one to work with simple holomorphic functions encoding
in a concise way complicated QK metrics. There is however an important difference in the
twistor description of A-type D2 instantons and more general ones. Although the transition
functions on the twistor space Z define the metric on the associated QK space M in a unique
way, this requires knowledge of the so-called contact twistor lines, representing local Darboux
coordinates on Z in terms of coordinates on M and the coordinate z on the CP 1 fiber.
Generically, this requires a solution of complicated integral equations and cannot be done
explicitly. But in the special case when the QK space has d + 1 commuting isometries, the
solution is known and can be described by the so-called O(2) multiplets. This is precisely the
case of the HM moduli space with only A-type D2 instantons included. All other instantons
break the isometries to discrete subgroups and a solution for the twistor lines can be written
only as a perturbative series in instantons. In particular, the linear approximation was explicitly
found in [23].

The aim of this paper is to present some exact results, going beyond the linear
approximation. The paper consists of two parts. The first part concerns the underlying
mathematical construction, whereas the second addresses the physical problem of the HM
moduli space.

The first part gives mostly a very brief review of the previous works [10, 11], introducing
the necessary notions and notations. It is split into two parts dealing with HK and QK cases,
respectively. Besides the simple review, it contains also some new results. In particular,
we derive the formula (2.16) for the exact ‘Lagrangian’, related to the Kähler potential on
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HK space by the Legendre transform, and establish a relation with the projected superspace
formulation of [9].

In the second part we elaborate on the results of [23], where the contributions of all D2-
instantons were found in the linear approximation. First, we show that with a suitable choice
of transition functions, favored by symplectic invariance, in the case of a single D2-instanton
the linear approximation becomes exact. It is not something unexpected because by a suitable
symplectic transformation any D2-instanton can be mapped to a D2-brane wrapping an A-
cycle, for which the description in terms of O(2) multiplets is applied and the contact twistor
lines are known exactly. Thus, our result can be considered as a non-trivial test satisfied by
the proposed transition functions.

Then the inclusion of several charges is considered and, although we are not able to
compute explicitly the twistor lines, we present some new insights. In particular, we give a
full consistent set of transition functions incorporating all D-instantons, improving a somewhat
naive proposal of [23]. This set is necessary for the complete description of the HM moduli
space and its twistor space. Furthermore, we find that a certain sector, consisting of D2-
instantons with all ‘mutually local charges’, admits the exact description similar to that of
the single-charge case. Finally, we discuss the consistency of our results with symplectic
invariance and the so-called wall-crossing conditions [24, 25].

2. Twistor description of HK and QK spaces

2.1. Kähler potential for HK manifolds

We start from the twistor approach to description of HK spaces. Although it is not directly
needed for our discussion of the HM moduli space in the following sections, we include it to
present an explicit formula for the Kähler potential in terms of twistor lines. Our discussion
closely follows [10].

The twistor space is a CP 1 bundle over the initial HK manifold. It is equipped with a
complex structure and a holomorphic two-form:

�(ζ) = ω+ − iζω3 + ζ 2ω−, (2.1)

where ζ is a coordinate on CP 1 and ωi are Kähler forms associated with three complex
structures J i carried by any HK manifold. Note that ω+ (ω−) is (anti-)holomorphic with
respect to the complex structure J 3.

In fact, � is a section of a two-form-valued O(2) bundle on CP 1 [5] which is reflected
in the fact that the representation (2.1) diverges at ζ = ∞. This signifies that one should
cover CP 1 by two open intersecting patches, U0 and U∞, around the north and south poles,
respectively, and the holomorphic two-form is represented in every patch as

�[0](ζ ) = �(ζ), �[∞](ζ ) = f −2
0∞�(ζ) = ω− − iζ−1ω3 + ζ−2ω+, (2.2)

where f 2
0∞ = ζ 2 is the transition function of the line bundle O(2) over CP 1. More generally,

we have to work with a set of patches Ui and representatives �[i] such that on every overlap
Ui ∩ Uj they are related by

�[i] = f 2
ij�

[j ] mod dζ. (2.3)

In every patch one can introduce a local system of Darboux coordinates

�[i] = dμ
[i]
I ∧ dνI

[i]. (2.4)
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Different systems on the overlaps of two patches are related by symplectomorphisms, which
can be expressed through generating functions S[ij ](ν[i], μ

[j ], ζ ) of the initial ‘position’ and
final ‘momentum’ coordinates. Then the gluing conditions take the following form

νI
[j ] = ∂

μ
[j ]
I

S[ij ](ν[i], μ
[j ], ζ ), μ

[i]
I = f 2

ij ∂νI
[i]
S[ij ](ν[i], μ

[j ], ζ ). (2.5)

The transition functions S[ij ] contain all information about the twistor space and the underlying
HK manifold. They can be chosen arbitrarily up to some consistency and reality conditions,
and define the HK space uniquely up to some gauge freedom [10]. All geometric information
can be restored once we solved the gluing conditions (2.5) for the coordinates νI and μI as
functions of ζ . Such functions are called twistor lines. The free parameters of the solution
play the role of coordinates on the HK base.

Here we will consider the situation where νI and μI are perturbations of global sections
of O(2) and O(0), respectively. Then it is convenient to redefine

ηI
[i](ζ ) ≡ ζ−1f 2

0iν
I
[i](ζ ) (2.6)

and choose the generating functions as

S[ij ](ν[i], μ
[j ], ζ ) = ζf −2

0j

(
ηI

[i]μ
[j ]
I − H [ij ](η[i], μ

[j ], ζ )
)
. (2.7)

However, H [ij ] are not assumed to be infinitesimal and therefore we do not actually impose
any restrictions. The gluing conditions then become

ηI
[j ] = ηI

[i] − ∂
μ

[j ]
I

H [ij ], μ
[j ]
I = μ

[i]
I + ∂ηI

[i]
H [ij ]. (2.8)

These conditions can be rewritten as integral equations, which are suitable for the perturbative
treatment (see appendix A.2)

ηI
[i] = ηI

(0) + η̂I
[i], η̂I

[i] = −1

2

∑
j

∮
Cj

dζ ′

2π iζ ′
ζ ′3 + ζ 3

ζ ζ ′(ζ ′ − ζ )
H [ij ]I (ζ ′),

μ
[i]
I = i

2
	I + μ̂

[i]
I , μ̂

[i]
I = 1

2

∑
j

∮
Cj

dζ ′

2π iζ ′
ζ ′ + ζ

ζ ′ − ζ
H

[ij ]
I (ζ ′),

(2.9)

where the variable ζ is inside the contour Ci surrounding Ui in the counterclockwise direction,
H [ij ]I ≡ ∂

μ
[j ]
I

H [ij ],H
[ij ]
I ≡ ∂ηI

[i]
H [ij ] and

ηI
(0)(ζ ) = vI

ζ
+ xI − v̄I ζ. (2.10)

Of course, the integral equations (2.9) are as difficult as the initial equations (2.8). But
on the other hand, they introduce explicitly the coordinates on the HK base, vI , v̄I , xI and 	I ,
and allow one to get the complex structure together with the Kähler potential. Indeed, due
to (2.1), the holomorphic form ω+ is obtained as a constant term in the small ζ -expansion of
(2.4) in the patch U0:

ω+ = d

(
i

2
	I +

1

2

∮
C

dζ

2π iζ
HI

)
∧ d

(
vI − 1

2

∮
C

dζ

2π i
HI

)
, (2.11)

where, to avoid cluttering, we omitted the sum over different patches. From this result, we
read the complex coordinates on our HK space

uI ≡ vI − 1

2

∮
C

dζ

2π i
HI , wI ≡ i

2
	I +

1

2

∮
C

dζ

2π iζ
HI . (2.12)

Similarly one can get a formula for the Kähler form ω3. It imposes the following conditions
on the Kähler potential (the index on K denotes the derivative w.r.t. the corresponding variable)

KuI =
∮

C

dζ

2π iζ 2
HI , KwI

= −xI +
1

2

∮
C

dζ

2π iζ
HI . (2.13)
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Let us trade the Kähler potential for its Legendre transform

K(u, ū, w, w̄) = 〈L(u, ū, x, 	) − xI (wI + w̄I )〉xI . (2.14)

In the projective approach the function L appears as a Lagrangian on the projective superspace
[5, 7, 9]. From (2.13), the Lagrangian must satisfy

LuI =
∮

C

dζ

2π iζ 2
HI , LxI =

∮
C

dζ

2π iζ
HI , L	I

= i

2

∮
C

dζ

2π iζ
HI . (2.15)

Remarkably, these equations are integrable (see appendix A.1) and solved by

L =
∮

C

dζ

2π iζ
(H − μ̂I ∂μI

H). (2.16)

Together with (2.14), this result gives an explicit representation for the Kähler potential.
Our result can also be rewritten in the form found in [9]. Using (2.8) and (2.12), it is easy

to check that

K = −
∮

C

dζ

2π iζ
S̃ − wI

∮
C0

dζ

2π iζ
ηI

[0] + w̄I

∮
C∞

dζ

2π iζ
ηI

[∞], (2.17)

where

S̃[ij ](η[i], η[j ]) = ζ−1f 2
0j

〈
S[ij ](ν[i], μ

[j ], ζ ) − νI
[j ]μ

[j ]
I

〉
μ

[j ]
I

(2.18)

are generating functions of symplectomorphisms written as functions of two ‘positions’. This
representation coincides with equation (4.1) of [9], where the case of only two patches was
considered, provided ζηI

[0] and −ζ−1ηI
[∞] are identified as arctic and antarctic multiplets,

respectively.
As usual, the metric can be computed without knowing xI as a function of uI , ūI , wI , w̄I

explicitly. It is expressed through the derivatives of the Lagrangian as

KuI ūJ = LuI ūJ − LuI xKLxKxLLxLūJ ,

KuI w̄J
= LuI xKLxKxJ

+ i
[
LuI 	J

− LuI xKLxKxLLxL	J

]
,

KwI ūJ = LxI xKLxK ūJ − i
[
L	I ūJ − L	I xKLxKxLLxLūJ

]
,

KwI w̄J
= L	I 	J

− L	I xKLxKxLLxL	J
− LxI xJ

+ i
[
LxI xKLxK	J

− L	I xKLxKxJ ]
,

(2.19)

where LxI xJ

denotes the inverse of the matrix LxI xJ . In appendix A.1 we also provide formulae
for the inverse metric.

2.2. Twistor space of QK spaces

As was mentioned in section 1, QK spaces are in one-to-one correspondence with HK cones
and thus can be described by the formalism of the previous subsection, provided one imposes
additional constraints taking into account that the HK space in question is a cone. In particular,
the transition functions H [ij ] must be homogeneous of first degree in the arguments ηI

[i] and
independent of ζ [11, 26, 27]. On the other hand, in [11, 12] it was shown that QK spaces can
be described directly in terms of their twistor spaces Z and all geometric information is again
contained in transition functions relating different sets of coordinates analogous to the Darboux
coordinates from the previous subsection. In this case, these are canonical coordinates for the
contact one-form

X [i] ≡ dα[i] + ξ�
[i] dξ̃

[i]
� . (2.20)
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They can be very easily related to the coordinates νI , μI used above and the O(2)-valued
complex Liouville form on ZS :

ξ�
[i] = ν�

[i]

/
να

[i], ξ̃
[i]
� = μ

[i]
� , α[i] = μ[i]

α , να
[i]X [i] = νI

[i] dμ
[i]
I , (2.21)

where we have singled out one coordinate να
[i], and denoted by ν�

[i] the remaining d coordinates.

One can show that the HK cone conditions ensure that ξ�
[i], ξ̃

[i]
� and α[i] are all functions of the

coordinates xμ on M and the coordinate z parametrizing the CP 1 fiber of Z .
On the overlap of two patches, the contact form satisfies [11]

X [i] = f̂ 2
ijX [j ], f̂ 2

ij ≡ f 2
ij ν



[j ]

/
ν



[i] = η


[j ]

/
η



[i], (2.22)

whereas the canonical coordinates are related by contact transformations

ξ�
[j ] = ξ�

[i] + T �
[ij ], ξ̃

[j ]
� = ξ̃

[i]
� + T̃

[ij ]
� , α[j ] = α[i] + T̃ [ij ]

α , (2.23)

where we abbreviated

T �
[ij ] ≡ −∂

ξ̃
[j ]
�

H [ij ] + ξ�
[j ]∂α[j ]H [ij ],

T̃
[ij ]
� ≡ ∂ξ�

[i]
H [ij ], T̃ [ij ]

α ≡ H [ij ] − ξ�
[i]∂ξ�

[i]
H [ij ]

(2.24)

with H [ij ] being a general function of ξ�
[i], ξ̃

[j ]
� and α[j ]. Moreover, the coefficients f̂ 2

ij ,
appearing in (2.22), are also determined by H [ij ],

f̂ 2
ij = 1 − ∂α[j ]H [ij ]. (2.25)

To deal with the gluing conditions, we assume that the section ν on the twistor space ZS
of the Swann bundle has only two zeros situated at the centers of patches U±. (This assumption
is valid in the important particular case when ν is a global O(2) section.) By an SU(2) rotation
one can always bring them to the points z = 0 and z = ∞, respectively. Then these points
correspond to simple poles of ξ�

[±]. These are the only singularities of the contact twistor

lines ξ�
[i], ξ̃

[i]
� , α[i] except those introduced by the so-called ‘anomalous dimensions’ c�, cα .

The latter originate from possible logarithmic branch cuts on ZS and represent additional
input supplementing transition functions [11]. As a result, the gluing conditions (2.23) for the
contact twistor lines can be written as the following integral equations

ξ�
[i](z, x

μ) = A� + z−1Y� − zȲ � +
1

2

∑
j

∮
Cj

dz′

2π iz′
z′ + z
z′ − z

T �
[+j ](z

′),

ξ̃
[i]
� (z, xμ) = i

2
B� +

1

2

∑
j

∮
Cj

dz′

2π iz′
z′ + z
z′ − z

T̃
[+j ]
� (z′) + c� log z,

α[i](z, xμ) = i

2
Bα +

1

2

∑
j

∮
Cj

dz′

2π iz′
z′ + z
z′ − z

T̃ [+j ]
α (z′) + cα log z + c�(Y�z−1 + Ȳ �z),

(2.26)

where Y�,A�,B�,Bα are free parameters playing the role of coordinates onM. They contain
one parameter more than the dimension of M because the overall phase rotation of Y� can be
absorbed by a redefinition of the CP 1 coordinate z.

Similarly to the holomorphic two-form on ZS (2.1), the contact form on Z is restricted to
have the following expansion

X [i] = 2
e�[i]

z
(dz + p+ − ip3z + p−z2), (2.27)

where 	p is the SU(2) part of the Levi–Civita connection on M and the function �[i] is the
so-called ‘contact potential’. In general it is defined only locally and therefore carries the

6
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index of the patch Ui . This is an important object since its real part provides a Kähler potential
for the Kähler–Einstein metric on Z

K
[i]
Z = log

1 + zz̄
|z| + Re �[i](x

μ, z). (2.28)

The gluing conditions for the contact potential are determined by (2.25)

�[i] − �[j ] = log(1 − ∂α[j ]H [ij ]) (2.29)

and the potential must be regular everywhere. The condition (2.29) can be solved in terms of
contact twistor lines as

�[i] = φ − 1

2

∑
j

∮
Cj

dz′

2π iz′
z′ + z
z′ − z

log(1 − ∂α[j ]H [+j ](z′)). (2.30)

The first term in (2.30), which is a real constant, can actually be computed explicitly and is
given by

eφ = 1

4

∑
j

∮
Cj

dz′

2π iz′ (z
′−1Y� − z′Ȳ �)T̃

[+j ]
� (z′) +

1

2
(c�A� + cα). (2.31)

Although this result was obtained in [11] only in the first order in perturbations around the case
with d +1 commuting isometries (the non-perturbed transition functions H [ij ] are independent
of ξ̃� and α), it is easy to see that it holds for all orders. The contact twistor lines and
the contact potential (2.30) provide sufficient information to compute the metric on M. A
procedure to do this is described in detail in [11, 23].

Note that in the important particular case where the transition functions are independent
of α, the above description crucially simplifies: f̂ 2

ij = 1 and the contact potential is globally
defined coinciding with its constant part φ. This is the case for the hypermultiplet moduli
space in the absence of NS5-brane instantons considered in the next section.

3. D-instantons and hypermultiplet moduli space

3.1. HM moduli space in type IIA string theory

Our aim is to investigate the HM moduli space of type-IIA string theory compactified on
a CY threefold. It comprises h2,1(X) + 1 hypermultiplets, which include the complex
structure moduli X� = ∫

γ � �, F� = ∫
γ�

�, the RR scalars ζ�, ζ̃� representing the RR

three-form integrated along a symplectic basis (γ �, γ�) of A and B cycles in H3(X, Z), the
four-dimensional dilaton eφ = 1

/
g2

(4) and the Neveu–Schwarz (NS) axion σ , dual to the
Neveu–Schwarz two-form B in four dimensions. Whereas X� provide a set of homogeneous
coordinates for complex structure deformations, they may be traded for the inhomogeneous
coordinates za = Xa/X0.

To describe the HM moduli space, we will use the twistor approach from the previous
section. This means that we should provide a covering of CP 1, an associated set of transition
functions and a set of anomalous dimensions. These data allow in principle one to compute
the contact twistor lines (2.26), the contact potential (2.30) and to derive the metric. The
coordinates appearing as free parameters of these solutions can be related to the physical fields
of type-IIA string theory using considerations of symplectic invariance [23].

For the perturbative metric, which was initially obtained via the projective superspace
and superconformal quotient [13–15, 28], such a formulation was given in [11]. At tree level,
the HM moduli space is determined via the ‘c-map’ construction [29, 30] from the moduli
space of complex structure deformations and therefore it is completely characterized by the

7
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holomorphic prepotential F(X). It specifies the transition functions H [±0] corresponding to
the covering of the twistor space Z by three patches: two patches U+,U− are open discs
centered around z = 0 and z = ∞ and a third patch U0 covers the rest of CP 1 (see the next
subsection for precise formulae). The one-loop correction is determined by the Euler number
of CY, χX = 2(h1,1(X) − h2,1(X)), and incorporated through a non-vanishing anomalous
dimension cα . It has been argued that there are no higher loop corrections [14].

The inclusion of non-perturbative effects into this framework was considered in [23]. It
was suggested that every D2-instanton of charge γ = (q�, p�), i.e. wrapping a three-cycle in
the homology class q�γ � − p�γ� ∈ H3(X, Z), defines two ‘BPS rays’ on CP 1 going from
z = 0 to z = ∞. These rays introduce discontinuities in the twistor lines, thus requiring the
introduction of additional patches. The transition functions through the rays are determined
by dilogarithm functions, Li2(x) = ∑∞

m=1 m−2xm, of symplectic invariant combinations of
twistor lines, whereas the weights of instanton contributions were argued to be given by
generalized Donaldson–Thomas invariants found in [24].1

However, these instanton corrections were analyzed only in the linear approximation.
Although a proposal for the transition functions describing the exact twistor space has also
been given, we will see that it was not quite precise and complete. In particular, only
transition functions through the BPS rays were proposed, but even they were oversimplified.
Below we present such an exact complete description providing a full consistent set of
transition functions, which are argued to be valid at all orders in the instanton expansion.
Our argumentation is based on symplectic invariance and it will be discussed in detail in the
end of this section when all essential properties of the construction are already deduced. The
construction itself represents the core of this section. First, we show how it is realized in
the case of a single D2-instanton, where all relevant quantities can be computed explicitly,
and then we generalize it to incorporate all instantons. Moreover we find that for a subset of
all D-instantons consisting of ‘mutually local states’ there is an explicit representation of the
contact twistor lines similar to the single-charge case.

3.2. The case of a single charge

3.2.1. Twistor space in the presence of one D2-instanton. In this subsection we consider
the situation when the HM moduli space is affected by only one D2-instanton of charge
γ = (q�, p�). We give an improved version of the twistor space suggested in [23] and
compute exact contact twistor lines and the contact potential.

First we introduce the following covering of CP 1 (see figure 1, left). As we mentioned
above, each charge vector γ defines a pair of ‘BPS rays’ �±γ on CP 1 going between the north
and south poles. They are restricted to lie in the hemispheres V±γ defined by

Vγ = {z : Im(Z(γ )/z) < 0}, (3.1)

where Z(γ ) is the normalized central charge function on H3(X, Z),

Z(γ ) ≡ q�z� − p�F�(z)√
K(z, z̄)

(3.2)

1 A similar picture was suggested also in [25] in the context of D = 3,N = 4 supersymmetric gauge theories
obtained by compactifying D = 4,N = 2 theories on a circle. In this case, the moduli space is HK and corrected by
instantons representing 4D BPS solitons winding around the compactification circle. In fact, the two moduli spaces
are very close not only at the qualitative level, but also quantitatively since the D-instantons are described in both
cases by essentially the same transition functions.
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U+

U−

U0’

U−

U0’

U+

U0U0 l−γ l−γ

z =

z = 0

z =

z = 0

lγ lγ

Figure 1. Two coverings of CP 1. The covering on the left is at the basis of our construction of the
HM twistor space affected by one D-instanton. The covering on the right is obtained in the limit
where the strips U± go to zero width along the meridians �±γ , while maintaining a non-zero size
at the north and south poles.

with K(z, z̄) = −2 Im(z̄�F�(z)). For convenience, we can fix the position of the rays at the
middle of the hemispheres

�γ = {z : Z(γ )/z ∈ iR−}. (3.3)

Then we cover CP 1 by four patches: the first patch U+ surrounds the north pole and extends
along the rays �±γ down to the equator. The second patch U− surrounds the south pole and
similarly extends halfway along �±γ , with a non-vanishing intersection with U+. The rest of
CP 1 consists of two connected parts covered by two patches U0 and U0′ , which overlap with
U+ and U− but stay away from the contours �±γ .

Thus, one has to specify transition functions corresponding to the overlaps of U0 and U0′

with U±. The transition function between U+ and U− can then be determined by composing the
previous ones. We suggest that the twistor space incorporating the effect of one D-instanton
is produced by the following set

H [+0] = H [+0′] = i

2

[
F(ξ[+]) + Gγ − 1

2
q�p�(G′

γ )2

]
,

H [−0] = H [−0′] = i

2

[
F̄ (ξ[−]) − Gγ − 1

2
q�p�(G′

γ )2

] (3.4)

and the only non-vanishing anomalous dimension is cα = χX/(96π). Here we introduced the
function

Gγ (�γ ) = inγ

4π3

∫ −i∞

0

�d�

�2
γ − �2

Li2(e
−2π i�), (3.5)

G′
γ denotes its derivative, and the argument �γ is related to the arguments of the transition

functions through the transcendental equation

�[±0]
γ ≡ q�ξ�

[±] + 2ip�ξ̃
[0]
� = �γ ∓ q�p�G′

γ (�γ ). (3.6)

The coefficients nγ are supposed to coincide with the generalized Donaldson–Thomas
invariants and for vanishing p� can be related to the genus zero Gopakumar–Vafa invariants.

9
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The holomorphic prepotential encodes the tree level part of the hypermultiplet metric, the
anomalous dimension gives rise to the one-loop correction, and the function Gγ incorporates
the effect of D2-instanton of charge γ . In the linear approximation, where one neglects the
quadratic term in Gγ , the transition functions (3.4) coincide with those proposed in [23]. Here
the proposal is extended to all orders. In sections 3.2.2 and 3.4.1 we show that this extension
is favored by symplectic invariance.

The transition functions (3.4) are designed in such a way in order to produce discontinuities
in ξ�

[0], ξ̃
[0]
� along the BPS rays given by simple log(1 − e−2π i�γ ). Indeed, when one evaluates

derivatives entering the gluing conditions (2.23), one should take into account that this amounts
to differentiating the instanton contribution in (3.4) with respect to �[±0]

γ , whereas the function
Gγ depends on �γ . Therefore, one must use the relation (3.6), which ensures the following
important property

d

d�
[±0]
γ

(
Gγ ∓ 1

2
q�p�(G′

γ )2

)
= G′

γ (�γ ). (3.7)

The function G′
γ has the required discontinuity when �γ crosses the integration contour and

one can adjust the contour in such way that in the z-plane, at least near the poles, it goes
along �±γ .

This consideration shows that the quadratic term is needed in order to take into account
the difference in the arguments of the transition functions and of the function Gγ . It could be
avoided if one takes Gγ to be dependent directly of �[±0]

γ . However, as will become clear later,
this would spoil the symplectic invariance. Therefore, Gγ must depend on �γ defined through
(3.6), which will turn out to be given by a symplectic invariant combination of twistor lines
(see (3.15) below). As a result, the transition functions generate a twistor space carrying a
representation of the symplectic group and allow an exact solution for the twistor lines (almost,
i.e. up to quadratic terms appearing in the relation between the NS axion and the parameters
of the twistor lines) coinciding with the linear approximation found in [23].

In order to present this solution, it will be convenient to work in the patch U0, where
we expect the presence of symplectic invariance [11]. Besides, it is convenient to define the
following combinations

ρ� ≡ −2iξ̃ [0]
� , α̃ ≡ 4iα[0] + 2iξ̃ [0]

� ξ�
[0]. (3.8)

Then we claim that the transition functions (3.4) lead to the following twistor lines

ξ�
[0] = ζ� + R(z−1z� − zz̄�) +

nγ

8π2
p�I(1)

γ (z), (3.9a)

ρ� = ζ̃� + R(z−1F� − zF̄�) +
nγ

8π2
q�I(1)

γ (z), (3.9b)

α̃ = σ + R(z−1W − zW̄ ) +
iχX

24π
log z +

�γ

π2
(z−1Wγ + zW̄γ )Kγ

+
inγ

8π2

[
1

π i
I(2)

γ (z) +
(
�γ + z−1Wγ − zW̄γ

)
I(1)

γ (z)
]

, (3.9c)

where we defined the type-IIA fields

Rz� = Y�, ζ� ≡ A�, ζ̃� ≡ B� + A� Re F�� +
nγ

2π2
p� Im F��Kγ ,

σ ≡ −2Bα − ζ�ζ̃� +

(
ζ�ζ� − n2

γ

4π4
p�p�K2

γ

)
Re F�� (3.10)

+
nγ

π2
p�ζ� Im F��Kγ +

n2
γ

4π4
q�p�K2

γ ,

10
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and introduced

W(z) ≡ F�(z)ζ� − z�ζ̃�. (3.11)

Wγ ≡ R(q�z� − p�F�(z)), �γ ≡ q�ζ� − p�ζ̃�, (3.12)

as well as

Kγ ≡
∞∑

m=1

1

m
sin(2πm�γ )K0(4πm|Wγ |),

I(ν)
γ (z) ≡

∞∑
m=1

∑
s=±1

sν

mν
e−2π ism�γ

∫ ∞

0

dt

t

t − εγ siz
t + εγ siz

e−2πm|Wγ |(t−1+t),

(3.13)

with εγ = e−i arg Wγ . Here R is a real field which can be traded for the four-dimensional dilaton
φ coinciding with the contact potential. Their relation is given below in (3.18). In the patch
U0′ the twistor lines are given by the same formulae, although their analytic continuation to U0

does not coincide with (3.9) due to the discontinuities picked up by I(ν)
γ (z). In U± the twistor

lines can be obtained by applying the gluing conditions (2.23) with H [ij ] from (3.4).
Since the twistor lines satisfy all gluing conditions by construction, to prove that they

follow from (2.23), it is sufficient to show that they are regular everywhere except for the
singularities allowed in (2.26). The regularity in the patches U0 and U0′ is evident because the
only singularities of I(ν)

γ (z) are two cuts from z = 0 to z = ∞, which belong to U+ ∪ U−.
Thus, it remains to check the analytic structure in the patches U±.

For this purpose, note that, due to (3.7), the analytic structure (besides simple poles at
z = 0,∞) of ξ�

[±] and ξ̃
[±]
� is determined by the following combination2

I(1)
γ (z) ± 4

[∫ −i∞

0

�γ d�

�2
γ − �2

log(1 − e−2π i�) +
π

12i�γ

]
. (3.14)

To analyze it, we need to know the dependence of �γ on z. It can be found from (3.7) and
(3.6), which imply

�γ = q�ξ�
[0] − p�ρ�. (3.15)

Using the explicit solution (3.9), one therefore finds

�γ = �γ + z−1Wγ − zW̄γ (3.16)

and thus �γ does not contain instanton corrections. Now it is easy to check that although both
I(1)

γ (z) and the integral over � have two cuts starting from z = 0 (z = ∞), their discontinuities
cancel each other. As a result, (3.14) defines a meromorphic function in the neighborhood of
the north (south) pole.

Finally, it remains to analyze α[±]. Using (3.8) and the gluing conditions (2.23), one
obtains

4iα[±] = α̃ − 2iξ�
[±]ξ̃

[±]
� ± (2Gγ − �γG′

γ ). (3.17)

Again, it is easy to check that the discontinuities of the last term cancel the discontinuities in
α̃ generated by the terms in the last line of (3.9c). Besides, the simple poles at z = 0 (z = ∞),
which are present in (3.9c), are all canceled by the second term in (3.17). Thus, the only
singularity of α[±] is given by the simple logarithmic term log z, in accordance with (2.26).

2 ξ̃
[+]
� contains an additional non-trivial term F�(ξ[+])/(2i). But since we prove that ξ�

[+] is meromorphic in U+, this
term is also meromorphic.

11
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This completes the proof of our solution (3.9). In appendix B we also give a direct derivation
of this solution from the integral representation (2.26).

The contact potential �A/B = φ corresponding to the solution (3.9) coincides with the
result found in the linear instanton approximation and is given by

eφ = R2

4
K(z, z̄) +

χX

192π
+

nγ

4π2

∑
m>0

|Wγ |
m

cos(2πm�γ )K1(4πm|Wγ |). (3.18)

Through (2.28) this result encodes the Kähler potential on Z .
As we claimed above, the contact twistor lines (3.9) and the contact potential (3.18) are

compatible with the action of the symplectic group. Indeed, if one simultaneously transforms
the type-IIA fields and the charge vector γ = (q�, p�), then ξ�

[0] and ρ� form a symplectic
vector, whereas α̃, φ and the variable �γ are symplectic invariants.

3.2.2. Transition functions through BPS rays. It is instructive to find the transition
function between the patches U0 and U0′ . Although they do not intersect, we can define
the corresponding transition function through the composition law of elementary contact
transformations. In the particular case where the transition functions H [ij ] are independent of
α[j ], this law and the inverse transform are given by

H [ij ] = H [ik] + H [kj ] + ∂ξ�
[k]

H [kj ]∂ξ̃
[k]
�

H [ik],

H [ji] = −H [ij ] + ∂ξ�
[i]
H [ij ]∂

ξ̃
[j ]
�

H [ij ],
(3.19)

where, if necessary, the domain of definition of transition functions is extended by means of
analytical continuation. Combining these equations, one finds

H [ij ] = −H [ki] + H [kj ] + ∂ξ�
[k]

(H [ki] − H [kj ])∂ξ̃
[k]
�

H [ki]. (3.20)

The latter equation can already be applied to our twistor space. Let us specialize it for
i = 0, j = 0′, k = +. In fact, one can introduce two transition functions relating U0 and
U0′ because there are two inequivalent ways to perform the necessary analytical continuation,
either through �γ or through �−γ . We attach the corresponding index to H [00′] to distinguish
these two cases. Then it is easy to show that

H [00′]± = i

2

(
±G±γ − 1

2
q�p�(G′

±γ )2

)
, (3.21)

where

Gγ (�γ ) = nγ

(2π)2
Li2(e

−2π i�γ ) (3.22)

and �γ is expressed through the arguments of the transition functions by means of

�[00′]
γ ≡ q�ξ�

[0] + 2ip�ξ̃
[0′]
� = �γ − q�p�G′

γ (�γ ). (3.23)

The transition functions (3.21) can be considered as describing a simplified version of
our twistor space. This simplified version appears if one shrinks U± along the contours �±γ

and reduces them to small discs around the north and south poles of CP 1, as shown on the
right of figure 1. As a result, the two patches, U0 and U0′ , have two disconnected common
boundaries and the transition functions through them are given by H [00′]± . Such a description
is a very convenient setup to perform calculations and it will be used in the next subsection to
generalize the present construction in the case of several D-instantons.

In [23] a proposal for the exact contact transformations through the BPS rays has been
advocated. In our notation it says that H [00′]± = ± i

2G±γ

(
�[00′]

γ

)
. The result (3.21) coincides

with that proposal only in the linear approximation. At higher orders the difference is twofold.

12
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First, the transition functions (3.21) contain an additional quadratic term proportional to
the non-invariant combination of charges q�p�. Second, the argument of Gγ does not
coincide with the combination of twistor lines �[00′]

γ . As we explained below (3.7), these
two differences are related and originate from the requirement that the discontinuities along
the BPS rays be simple logarithmic functions of the symplectic invariant �γ . In turn, this is
needed for symplectic invariance and to ensure that the linear approximation is exact. It must
be exact for any single charge γ because, as mentioned in section 1, an appropriate symplectic
transformation maps it to the form (q ′

�, 0) corresponding to a D-brane wrapping an A-cycle,
which does possess this property. On the other hand, for the linear approximation to be exact,
it is necessary that the argument of Gγ does not receive instanton corrections. This is true for
�γ (3.16), but it is not true for �[00′]

γ . Thus, we may claim that the proposal of [23] is not
consistent with symplectic invariance, whereas our proposal is consistent, as follows from the
explicit results for the contact twistor lines. An additional argument supporting this statement
and formulated directly at the level of transition functions will be given in section 3.4.1.

Note that although Gγ coincides with the discontinuity of Gγ , this is not true for the whole
transition function: H [00′]± cannot be obtained as a discontinuity of H [+0] due to the quadratic
term. The correct way to obtain (3.21) is by means of the composition rule (3.20) as described
above.

3.3. Inclusion of all instantons

3.3.1. Transition functions through BPS rays and twistor lines. Let us include several
instantons into consideration. The starting point will be the transition function (3.21) through
a BPS ray representing the contribution of one instanton. Every instanton gives rise to two
such rays on CP 1, defined in (3.3) by the phase of its central charge. Following [23, 25],
we assume that across every BPS ray the twistor lines experience contact transformations
generated by functions (3.21).

More precisely, let {γa}Na=1 be a set of charges under consideration. We assume that the
phases of their central charges Z(γa) are all different. Then the BPS rays �±γa

split CP 1

into 2N sectors (see figure 2). For convenience we introduce additional N charges, which are
the opposite of the initial ones, and we order all 2N charges, labeled by i = 1, . . . , 2N , in
accordance with decreasing of the phase of Z(γi). Furthermore, the sector bounded by �γi−1

and �γi
will be denoted by Ui and we define

�[ij ]
γk

≡ qk,�ξ�
[i] + 2ip�

k ξ̃
[j ]
� . (3.24)

With these definitions the transition functions through the BPS rays are

H [ii+1] = i

2

(
Gγi

− 1

2
qi,�p�

i (G′
γi
)2

)
, (3.25)

where Gγi
(�γi

) with �γi
≡ �[ii]

γi
is defined in (3.22). They generate the contact

transformations expressed by the following relations between the contact twistor lines

ξ�
[j ] = ξ�

[i] +
j−1∑
k=i

p�
k G′

γk
, −2iξ̃ [j ]

� = −2iξ̃ [i]
� +

j−1∑
k=i

qk,�G′
γk

. (3.26)

Although the gluing conditions (3.26) are linear in the functions Gγi
, the resulting twistor

space is much more complicated than the twistor space with a single instanton presented in
section 3.2. In particular, the linear instanton approximation is no longer exact. The easiest
way to see this is to consider �γi

in this approximation. Substituting the results (3.9), where

13



J. Phys. A: Math. Theor. 42 (2009) 335402 S Alexandrov

U1U3

U+

U−

U2U1U2U3

U+

H [23] H [12]

U−

H [+2]

H [−2]

lγ2
lγ1

z = 0 z = 0

z = z =

Figure 2. Coverings of CP 1 in the presence of several instantons. The left picture defines a
covering consisting of two patches around the poles and extending along the BPS rays and 2N

patches filling the remaining holes, where N is the number of different charges. The right picture
is a limit of the left one and is more suitable for the analysis of the twistor space.

the instanton contributions should contain the sum over all charges, into the definition (3.24),
one obtains (3.16) plus the following contribution

1

8π2

∑
j

nγj
〈γi, γj 〉I(1)

γj
(z), (3.27)

where

〈γ1, γ2〉 = q1,�p�
2 − q2,�p�

1 (3.28)

defines a symplectic invariant scalar product on the lattice of charges. Thus, the instantons
affect the variables, which the transition functions depend on. As a result, their contributions
propagate further and destroy the one-charge exact solution.

An exact solution can nevertheless be constructed by a perturbative approach described
in appendix A.2. For ξ�, ξ̃�, it was analyzed in [25] where similar integral equations for the
twistor lines of a HK space appeared. It is easy to see that it can be written as

ξ�
[i] = ζ� + R(z−1z� − zz̄�) +

1

8π2

∑
j

nγj
p�

j Jγj
(z),

− 2iξ̃ [i]
� = ζ̃� + R(z−1F� − zF̄�) +

1

8π2

∑
j

nγj
qj,�Jγj

(z),
(3.29)

where z ∈ Ui ,

Jγi
(z) =

∫
�γi

dz′

z′
z + z′

z − z′ log(1 − e−2π i�γi
(z′)), (3.30)

and �γi
(z) should be found as a solution of the following system of equations

�γi
(z) = �γi

+ z−1Wγi
− zW̄γi

+
1

8π2

∑
j �=i

nγj
〈γi, γj 〉

∫
�γj

dz′

z′
z + z′

z − z′ log
(
1 − e−2π i�γj

(z′))
.

(3.31)
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The latter equations encode all non-trivialities of the problem. They can be analyzed
perturbatively and their solution, represented by a set of variables �γi

(z), contains all orders
of the instanton expansion.

One can also obtain a similar representation for the twistor line α which is a bit more
complicated. By appropriately adjusting the considerations in appendix B, one finds the
following result, written again for the combination α̃ defined in (3.8),

α̃[i] = σ + R(z−1W − zW̄ ) +
iχX

24π
log z − 1

4π2

∑
j

nγj

(
z−1Wγj

+ zW̄γj

)
Jγj

(0)

+
1

8π2

∑
j

nγj

[
i

π

∫
�γj

dz′

z′
z + z′

z − z′ Li2(e
−2π i�γj

(z′)
) +
(
�γj

+ z−1Wγj
− zW̄γj

)
Jγj

(z)

]

+
1

64π2

∑
j �=k

nγj
nγk

〈γj , γk〉
∫

�γj

dz′

z′
z + z′

z − z′ log
(
1 − e−2π i�γj

(z′))Jγk
(z′). (3.32)

3.3.2. Transition functions to the poles. To complete the definition of the twistor space,
we need to provide two additional transition functions to the patches U± around the poles
of CP 1. We can find them requiring that they lead to regular contact twistor lines in these
patches, i.e. that they cancel singularities of (3.29) and (3.32). The main complication comes
from the fact that the variables �γi

(z) defined by (3.31) acquire branch cuts along the BPS
rays �γj

, j �= i.3 As a result, the simple sum of one-charge contributions (3.4) no longer
works because canceling the singularities of the initial twistor lines by means of integrals
introduces other singularities through the dependence of �γi

(z). Therefore, a more elaborated
construction is required.

The correct transition functions to the patch U+ may be given in terms of �+
γi

≡ �[++]
γi

and
the functions �γi

(�) defined by the following system of integral equations

�γi
(�) = 1

8π2

∑
j

nγj
〈γi, γj 〉

[ ∫ −i∞

0

2� d�′

�+
γj

� − �+
γi
�′ log

(
1 − e−2π i(�′−�γj

(�′))) + Ej

]
, (3.33)

where the functions Ej satisfy

Ej = π i

6�+
γj

+
1

2π2

∑
k

nγk
〈γj , γk〉

∫ −i∞

0
Dγj

�

∫ −i∞

0

�′Dγk
�′(

�+
γk

� − �+
γj

�′)2
+

1

16π2

∑
k �=l

nγk
nγl

nγj

〈γk, γl〉 Ek

∂El

∂�+
γj

, (3.34)

and we introduced for convenience the measure

Dγ� = log(1 − e−2π i(�−�γ (�))) d�. (3.35)

3 These variables possess interesting monodromies around the north and south poles. Since every charge γa appears
in the sum together with its opposite −γa , the total contribution of this pair of charges to the monodromy is linear in
�γa . As a result, going around the poles in the clockwise direction, one obtains the following transformation

�γi
−→ �γi

−
∑

a

nγa 〈γi , γa〉�γa mod n ∈ Z.

Taking into account that nγa are expected to be integers, we see that the monodromy gives rise to a linear combination
of �γa with integer coefficients and can be represented as a linear map on the charge lattice:(

q�

p�

)
−→

(
q�

p�

)
−

∑
γ ′∈�/Z2

nγ ′ 〈γ, γ ′〉
(

q ′
�

p
′�

)
,

where �/Z2 is the charge lattice modulo identification γ ↔ −γ .
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Similar to the equations for �γi
(3.31), they can be solved perturbatively by expanding in

powers of instantons, which is also equivalent to the expansion in invariants nγi
.4

Since �+
γi

is by definition meromorphic around the north pole, the singularities in the
above expressions may appear only from the integrals. However, the denominator in (3.33)
and (3.34) can be approximated by z−1

(
Wγj

� − Wγi
�′) which does not vanish if the phases

of Wγi
and Wγj

are different. Thus, both Ej and �γi
(�) are regular functions in the patch

U+. However, the latter function possesses an important property that for � = �+
γi

it gives
rise to

�γi

(
�+

γi

) = 1

8π2

∑
j

nγj
〈γi, γj 〉Sj , (3.36)

where

Sj = 2
∫ −i∞

0

d�

�+
γj

− �
log
(
1 − e−2π i(�−�γj

(�))
)

+ Ej (3.37)

has a branch cut starting from z = 0. If we impose the relation

�γi
= �+

γi
− �γi

(
�+

γi

)
, (3.38)

then the discontinuity along this cut is the same as the discontinuity of the function Jγi
(3.30).

This is consistent with the regularity of �+
γi

in U+ because the relation (3.38) ensures that the
corresponding singularities of �γi

(
�+

γi

)
cancel those of �γi

. The functions Ej are not really
important since they are regular and can be canceled by appropriate (although complicated)
gauge transformation.

Now we are ready to define the transition functions. They are given by

H [+i] = i

2
F(ξ[+]) − 1

16π3

∑
j

nγj

∫ −i∞

0

d�

�+
γj

− �
Li2
(
e−2π i(�−�γj

(�))
)

− i

(16π2)2

∑
j �=k

nγj
nγk

qj,�p�
k SjSk − i

16π2

∑
j

nγj

∫ −i∞

0

Dγj
�

�+
γj

− �
�γj

(�). (3.39)

In appendix C we verify that they indeed define regular twistor lines in the patch U+ and they
are consistent with the transition functions through the BPS rays (3.25). In a similar way one
can construct the transition functions to the patch U−. For this it is sufficient to replace F(ξ[+])

by F̄ (ξ[−]),�
+
γi

by �−
γi

, and to flip the sign of nγj
in all above equations.

Once we know the full set of transition functions, it is possible to compute the contact
potential coinciding with the four-dimensional dilaton. This calculation uses the property

ξ[±](z) = ξ[i](z) + O(z±2), (3.40)

which can be established from (C.5), (3.37) and (3.34). Then the general formula for (the
constant part of) the contact potential (2.31) gives the following result

eφ = R2

4
K(z, z̄) +

χX

192π
− i

16π2

∑
j

nγj

∫
�γj

dz
z

(
z−1Wγj

− zW̄γj

)
log
(
1 − e−2π i�γj

(z))
.

(3.41)

4 Note that nγj
in the denominator of the last term in (3.34) is canceled after substituting ∂�+

γj
El .
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3.3.3. Restriction to mutually local states. Let us note that if we restrict our attention to a
sector in the charge lattice where all charges satisfy the following condition

〈γi, γj 〉 = 0, (3.42)

all above-mentioned complications, arising in the presence of several charges, disappear.
Indeed, substituting it into (3.31), one finds that �γi

(z) do not contain instanton corrections as
in the single-charge case. Moreover, this is true for all �

[jj ]
γi

which turn out to be independent
of the label j ,

�[jj ]
γi

= �γi
+ z−1Wγi

− zW̄γi
. (3.43)

As a result, the linear instanton approximation again becomes exact. The contact twistor
lines are given by (3.29), where the function Jγ(z) may be replaced by the function 1

2I
(1)
γ (z)

(3.13),5 and by (3.32) where the last term vanishes and the same replacement may be done.
Similarly, the transition functions (3.39) considerably simplify and have the same structure
(3.4) as for single charge: the last term is absent and the third term coincides with the product
of derivatives of the second term.

Thus, the condition (3.42) gives rise to an exactly solvable sector. The exact twistor
lines can be used to extract the metric on the HM moduli space affected by D2-instantons
with charges satisfying this restriction, which we call by ‘mutually local states’. Although
this procedure is straightforward, we do not present here the final result since it has a quite
involved form.

It is clear that a particular set of mutually local states is given by D2 branes wrapping only
A-cycles which all have p� = 0. This is a maximal possible set of such states and any other
maximal set can be obtained by a symplectic transformation6. Due to this, it is not surprising
that any such sector is exactly solvable. This is just a consequence of such solvability for
A-type D2-instantons. Nevertheless, this still provides a non-trivial cross-check on our results.

3.4. Discussion

3.4.1. Symplectic invariance. Although the found twistor lines form a nice representation
of the symplectic group, one can ask whether the conditions of symplectic invariance can
be imposed directly on transition functions. Naively, one could expect that they should be
invariant under symplectic transformations. But for the functions H [±i] this is not true even
at the tree level due to the presence of the holomorphic prepotential. As for the transition
functions through the BPS rays (3.25), they are not invariant due to the factor q�p� in front
of the additional quadratic term.

To understand what is going on, let us consider the gluing conditions (2.23). If in both
patches Ui ,Uj , the twistor lines ξ�,−2iξ̃� form a symplectic vector and α̃ is invariant, the
same property must hold for the appropriate combinations of derivatives of the transition
function H [ij ]. However, it is difficult to convert this condition into a restriction on H [ij ]

itself. The reason is that the transition functions used so far relate coordinate systems in two
different patches and therefore depend also on coordinates in these different patches. On the
other hand, symplectic invariance holds only for quantities defined in a single patch.

It is well known that generically one cannot write a symplectomorphism or a contact
transformation in terms of a function dependent only on initial coordinates. Let us nevertheless

5 More precisely, (3.43) ensures that Jγ (z) −J−γ (z) = I(1)
γ (z). Combining the contributions of charges γ and −γ ,

one obtains the simple factor 1
2 .

6 For the universal hypermultiplet [20, 31–35] this means that mutually local states can include only D-branes
wrapping either the A or B cycle.
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find the conditions under which this might be possible. If one writes the contact transformation
(which induces a symplectomorphism in the (ξ, ξ̃ )-subspace) as

ξ�
[j ] = ξ�

[i] − ∂ξ̃
[i]
�

Ĥ [ij ], ξ̃
[j ]
� = ξ̃

[i]
� + ∂ξ�

[i]
Ĥ [ij ],

α[j ] = α[i] + Ĥ [ij ] − ξ�
[i]∂ξ�

[i]
Ĥ [ij ] + 1

2∂ξ̃
[i]
�

Ĥ [ij ]∂ξ�
[i]
Ĥ [ij ],

(3.44)

where Ĥ [ij ] is a function of ξ�
[i] and ξ̃

[i]
� , and requires that the contact one-form X (2.20) be

preserved, one finds the following condition on Ĥ [ij ]

∂ξ�
[i]
Ĥ [ij ]d

(
∂ξ̃

[i]
�

Ĥ [ij ]
) = ∂ξ̃

[i]
�

Ĥ [ij ]d
(
∂ξ�

[i]
Ĥ [ij ]

)
. (3.45)

Assume for a moment that this condition is satisfied. Then the symplectic properties
of the contact twistor lines ξ�, ξ̃� require that

(
∂ξ̃

[i]
�

Ĥ [ij ], 2i∂ξ�
[i]
Ĥ [ij ]

)
be a symplectic vector,

whereas from the gluing condition on α̃,

α̃[j ] = α̃[i] + 2i
(
2Ĥ [ij ] − ξ�

[i]∂ξ�
[i]
Ĥ [ij ] − ξ̃

[i]
� ∂ξ̃

[i]
�

Ĥ [ij ]), (3.46)

one concludes that Ĥ [ij ] must be invariant under symplectic transformations. The latter
condition automatically solves also the former. Thus, if it is possible to write the contact
transformations between different patches in terms of transition functions dependent on
coordinates in one patch, symplectic invariance simply requires the invariance of these
functions.

Remarkably, condition (3.45) ensuring this possibility is satisfied by functions for which
all dependence on the contact twistor lines is through the symplectic invariant combination
�γi

. Thus, there is a class of contact transformations for which the generating functions can
be taken as in (3.44). In particular, we can define the following generating functions

Ĥ [ii+1](ξ[i], ξ̃
[i]) = i

2
Gγi

(�γi
), (3.47)

which are explicitly symplectic invariant. It is easy to see that they generate the same contact
transformations through the BPS rays as those generated by (3.25). This proves in another
way that our construction respects symplectic invariance.

If one allows the transition functions to depend on several combinations �[ii]
γj

associated
with different charges γj , the condition (3.45) is not satisfied unless the charges are
mutually local (3.42). This is related to the phenomenon of wall crossing considered in
the next subsection. Besides, the non-invariance of the tree-level part expressed through the
holomorphic prepotential is not in contradiction with symplectic invariance because it appears
in the transition functions to the patches U± only. But the contact twistor lines in these patches
do not form a representation of the symplectic group. Therefore, the above arguments cannot
be applied to Ĥ [±i].

The representation (3.47) is very nice since the non-invariant quadratic terms disappear
and all considerations become particularly simple. Note however the presence of a quadratic
term in the gluing condition for α (3.44), which was absent in (2.24). Thus, we traded quadratic
terms in the transition functions for similar terms in the gluing conditions. It is possible to get
rid of them everywhere if one simultaneously trades α for α̃ since the gluing condition (3.46)
for the latter is linear.

3.4.2. Wall crossing. In [25] a physical explanation for the so-called wall-crossing formula
[24] has been suggested in the context of N = 2 supersymmetric gauge theories. It has been
interpreted as a condition on the moduli space metric to be continuous across the lines of
marginal stability (LMS), where the BPS spectrum of single-particle states is known to jump
(see e.g. [36–38]). The wall-crossing formula relates the single instanton contribution on one
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side of the LMS to the multi-instanton contribution on the other side. This provides strong
constraints on these contributions.

A similar phenomenon as LMS is known to take place in N = 2 supergravity theories and
in [23] it was suggested that the wall-crossing formula is relevant also in this case expressing
the condition of regularity of the metric on the hypermultiplet moduli space. Here we would
like to show that our construction is consistent with the wall crossing.

The wall-crossing condition requires that the ‘generalized Donaldson–Thomas invariants’
�(γ ) defined in [24] must satisfy

�∏
γ=nγ1+mγ2
m>0,n>0

U�−(γ )
γ =

�∏
γ=nγ1+mγ2
m>0,n>0

U�+(γ )
γ , (3.48)

where �−(γ ) and �+(γ ) denote the value of �(γ ) on either side of the LMS where the phases
of the central charges (3.2), Z(γ1) and Z(γ2), align. Here

Uγ ≡ exp

( ∞∑
n=1

1

n2
enγ

)
(3.49)

is a group element constructed from the generators eγ of the following Lie algebra:

[eγ , eγ ′ ] = (−1)〈γ,γ ′〉〈γ, γ ′〉eγ +γ ′ . (3.50)

Except for the sign (−1)〈γ,γ ′〉, which can be absorbed into a redefinition of eγ by a choice of
‘quadratic refinement’ [25], this is the algebra of infinitesimal symplectomorphisms on the
complex torus (C×)2N .

In our case the LMS appear because the order of the BPS rays, determined by the phases
of the central charges Z(γi), is important. Despite apparent commutativity of the contact
transformations (3.26), it is illusive because the exchange of two charges changes relations
between the arguments �γi

of the functions entering the transformations. To see this explicitly
and to compare with the wall crossing, it is instructive to compute the composition of two
transition functions (3.25) associated with charges γ1 and γ2. From the composition law
(3.19), one finds

H [13] = i

2

[
Gγ1 + Gγ2 − 1

2

(
q1,�G′

γ1
+ q2,�G′

γ2

) (
p�

1 G′
γ1

+ p�
2 G′

γ2

)
+

1

2
〈γ1, γ2〉 G′

γ1
G′

γ2

]
.

(3.51)

From this result and using the relations (3.26) between the coordinates in different patches,
one can find the commutator of two transformations Uγi

generated by (3.25) with charges γ1

and γ2. Expanding in powers of Gγi
, at quadratic order one obtains

U−1
γ2

U−1
γ1

Uγ2
Uγ1

≈ −〈γ1, γ2〉 G′
γ1

G′
γ2

+ O
(
G3

γ

)
. (3.52)

It is clear that if we identify e−2π i�γ with the elements eγ , this commutation relation coincides
with the commutator (3.50), which is on the basis of the wall-crossing formula. The
construction from the previous subsection makes the comparison even more direct since then
the transition functions (3.47) are identical to (the logarithm of) the group elements (3.49).

Finally, we note that the composition law (3.51) for two contact transformations through
the BPS rays can easily be generalized to the case of n charges:

H [1n+1] = i

2

⎡
⎣∑

i

Gγi
− 1

2

(∑
i

qi,�G′
γi

)(∑
i

p�
i G′

γi

)
+

1

2

∑
i<j

〈γi, γj 〉G′
γi
G′

γj

⎤
⎦ . (3.53)

On the other hand, the above results imply that the contact transformations generated by the
mutually local states of section 3.3.3 are commutative, which means that the LMS phenomenon
does not occur in such a sector.
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Appendix A. Details on the twistor description of HK spaces

A.1. Solution for the Lagrangian

Here we want to prove the formula (2.16) for the Lagrangian, i.e. that it ensures the conditions
(2.15). For L given by this formula, by simple manipulations, one can establish the following
relations

LvI = ∂vI uJ

∮
C

dζ

2π iζ 2
HJ − ∂vI ūJ

∮
C

dζ

2π i
HJ ,

Lv̄I = ∂v̄I uJ

∮
C

dζ

2π iζ 2
HJ − ∂v̄I ūJ

∮
C

dζ

2π i
HJ ,

LxI =
∮

C

dζ

2π iζ
HJ + ∂xI uJ

∮
C

dζ

2π iζ 2
HJ − ∂xI ūJ

∮
C

dζ

2π i
HJ ,

L	I
= i

2

∮
C

dζ

2π iζ
HJ + ∂	I

uJ

∮
C

dζ

2π iζ 2
HJ − ∂	I

ūJ

∮
C

dζ

2π i
HJ ,

(A.1)

where L on the lhs is considered as a function of vI , v̄I , xI , 	I . Comparing this with the
relations between derivatives

∂vI |v̄,x,	 = ∂vI uJ ∂uJ + ∂vI ūJ ∂ūJ ,

∂v̄I |v,x,	 = ∂v̄I uJ ∂uJ + ∂v̄I ūJ ∂ūJ ,

∂xI |v,v̄,	 = ∂xI + ∂xI uJ ∂uJ + ∂xI ūJ ∂ūJ ,

∂	I

∣∣
v,v̄,x

= ∂	I
+ ∂	I

uJ ∂uJ + ∂	I
ūJ ∂ūJ ,

(A.2)

one immediately concludes that the LagrangianL satisfies the conditions (2.15). It is equivalent
to the previous perturbative results [10] due to the relation∮

C

dζ

2π iζ
(η̂IHI − μ̂IH

I ) = (uI − vI )∂uIL + (ūI − v̄I )∂ūIL. (A.3)

The fact that the complex structures must satisfy the algebra of the quaternions, e.g.

J +J− = − 1
2 (1 + iJ 3) ↔ (ω+)αγ Kγ δ̄(ω−)δ̄β̄ = Kαβ̄, (A.4)

imposes restrictions on the inverse metric. It is easy to find that it must be given by

KūI uJ = L	I 	J
− L	I xKLxKxLLxL	J

− LxI xJ − i
[
LxI xKLxK	J

− L	I xKLxKxJ ]
,

KūI wJ = −LxI xKLxKuJ − i
[
L	I uJ − L	I xKLxKxLLxLuJ

]
,

Kw̄I u
J = −LūI xKLxKxJ

+ i
[
LūI 	J

− LūI xMLxMxNLxN 	J

]
,

Kw̄I wJ = LūI uJ − LūI xKLxKxLLxLuJ .

(A.5)

This result requires that the Lagrangian satisfies some additional constraints in order to ensure
that (A.5) is indeed the inverse of (2.19). These constraints are a consequence of the fact that
L is given by a holomorphic function of only 2d + 1 variables and generalize the well-known
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constraints in the O(2) case [8], which were written recently also in the presence of linear
perturbations [10].

A.2. Perturbative solution

The integral equations (2.9) and (2.26) are a very convenient starting point to find twistor lines
by the perturbative method. This approach can be applied if the transition functions can be
represented as

H [ij ] =
∞∑

n=0

λnH [ij ]
(n)

, (A.6)

where H [ij ]
(0)

are all independent of μ
[j ]
I and λ is an infinitesimal parameter. Then at the zeroth

approximation, ηI are global O(2) multiplets which can be viewed as moment maps for the
isometries along 	I . At the next orders in the parameter λ however this structure is destroyed.
Expanding in λ, the integral equations (2.9) lead to the following solution

ηI
[i] = ηI

(0) +
∞∑

n=1

λnηI
(n)[i], μ

[i]
I = i

2
	I +

∞∑
n=0

λnμ
[i]I
(n) , (A.7)

where ηI
(0) was defined in (2.10) and

ηI
(n)[i] = −1

2

∑
j

∮
Cj

dζ ′

2π iζ ′
ζ ′3 + ζ 3

ζ ζ ′(ζ ′ − ζ )

[
H [ij ]I

(n)
+ · · ·] ,

μ
[i]I
(n) = 1

2

∑
j

∮
Cj

dζ ′

2π iζ ′
ζ ′ + ζ

ζ ′ − ζ

[
H

[ij ]
(n)I + · · · + ηJ

(n)[i]H
[ij ]
(0)IJ

]
,

(A.8)

where the transition functions are considered as functions of η(0),
i
2	+μ

[j ]
(0) and ζ ′, and the dots

correspond to other terms of nth order appearing in the expansion of H [ij ], which all depend
only on η

[i]
(k), μ

[j ]
(k), k < n. Thus, this leads to a well-defined iteration procedure.

Appendix B. Derivation of contact twistor lines for single charge

In this appendix we demonstrate that the twistor lines (3.9) satisfy the integral equations (2.26).
First, we compute the functions entering the gluing conditions (2.23) and defined in (2.24).

Due to (3.7), one has

T �
[+0] = p�G′

γ (�γ ), T̃
[+0]
� = i

2
(F�(ξ[+]) + q�G′

γ (�γ )),

T̃ [+0]
α = i

2

(
−F(ξ[+]) + Gγ (�γ ) − q�ξ�

[0]G′
γ (�γ ) +

1

2
q�p�(G′

γ (�γ ))2

)
.

(B.1)

The corresponding functions associated with the pair of patches U− and U0 can be obtained
replacing F(ξ[+]) by F̄ (ξ[−]) and changing the sign of the function Gγ . The explicit expression
for G′

γ (�γ ) is given by

G′
γ (�γ ) = − nγ

2π2

[∫ −i∞

0

�γ d�

�2
γ − �2

log(1 − e−2π i�) +
π

12i�γ

]
(B.2)

and �γ can be found in (3.16). Writing 2�γ

�2
γ −�2 = 1

�γ −�
+ 1

�γ +�
, it is clear that G′

γ considered

as a function of z, as well as the initial function Gγ , is a sum of two functions each having
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U0’

U−
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U+

U0U0
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C−0
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C+0’

z = 0 z = 0

z =z =

figure−eight
contour

lγ

l −γ

Figure B1. The contours on CP 1. The left picture shows the covering of CP 1 and the contours
used in (B.3). On the right these contours are transformed into one figure-eight contour, which
should be used to integrate one of the two terms in G′

γ . The second term should be integrated along
a similar figure-eight contour going around �−γ .

two cuts going from z = 0 and z = ∞ to two zeros of �γ , which are supposed to lie outside
U+ ∪ U−.

Due to the presence of these cuts, the representation (2.26) for the twistor lines is not
directly applicable because the contours around U± cannot be closed. To overcome this
problem, it is convenient to start with the following equivalent representation, exemplified
here for ξ̃

[0]
� ,7

ξ̃
[0]
� = i

2
B� − 1

2

∑
±

[∮
C±0

dz′

2π iz′
z′ + z
z′ − z

T̃
[±0]
� (z′) +

∮
C±0′

dz′

2π iz′
z′ + z
z′ − z

T̃
[±0′]
� (z′)

]
, (B.3)

where z ∈ U0 and the contours are shown in figure B1 (left). Then we have to consider
separately terms differing by the power of Gγ . The terms independent of Gγ , which are
proportional to the holomorphic prepotential, are all meromorphic, having at most poles at
z = 0 and z = ∞. Moreover, they coincide from two sides (U0 and U0′ ). Therefore, for these
terms the contours can be deformed just to two small circles around the north and south poles
of CP 1, and the corresponding integrals are evaluated by residues. All terms linear in Gγ ,
as noticed above, can be written as a linear combination of functions with two cuts and they
have opposite signs in T’s with indices [±0]. Such a situation was analyzed in [10] where it
was demonstrated that for each term the initial contours can be combined into one figure-eight
contour going around z = 0 and z = ∞, as shown in figure B1 (right). The integrals around
such contours reduce then to integrals along �±γ of the corresponding discontinuity. This
analysis is sufficient to evaluate ξ�

[0] and ξ̃
[0]
� . It is easy to verify that the results indeed coincide

with (3.9a) and (3.9b).
The calculation of α[0] is more complicated due to the presence of terms quadratic in

Gγ , which should be treated with great care. Let us collect the contributions quadratic in

7 Note a sign difference with (2.26).
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instantons, which come from the last two terms in T̃ [±0]
α . They are given by

i

4
q�p�

(
(G′

γ )2 ∓ nγ

4π2
I(1)

γ (z)G′
γ

)
= i

4
q�p�

[(
G′

γ ∓ nγ

8π2
I(1)

γ (z)
)2

− n2
γ

64π4

(
I(1)

γ (z)
)2]

.

(B.4)

The first term is regular in U±, as was noticed in (3.14). Thus, a non-trivial contribution to
α[0] originates from the second term only. The latter has two cuts along �±γ and the sum of
all integrals reduces to an integral along these contours of the residue of (B.4).8 As a result,
one finds the following contribution

− in2
γ

(4π)4
q�p�

∑
s1,s2=±

s1s2

∫ is1∞

0
D(s1)[z1]

∫ is2∞

0
D(s2)[z2]

2(z1 + z2)z
(z1 − z)(z2 − z)

= − in2
γ

(4π)4
q�p�

((
I(1)

γ (z)
)2

+ 16K2
γ

)
, (B.5)

where we denoted the measure D(s)[z] = dz
z log(1 − e−2π is�γ (z)). The other terms in T̃ [±0]

α can
be treated in the way discussed above. The only subtlety is that reducing the integral along the
figure-eight contour for the third term in (B.1) to the integral of its discontinuity, one should
take into account the contributions from the poles of the integration measure. After lengthy
calculations, one arrives at the total result, which is conveniently formulated in terms of the
combination α̃ and coincides with (3.9c). In particular, the contribution quadratic in instantons
(B.5) is canceled in this combination and the linear instanton approximation is exact. The
only place where the quadratic terms appear is the definition of the field σ in (3.10).

Appendix C. Verification of transition functions

The aim of this appendix is to check that the transition functions (3.39) satisfy all necessary
conditions, namely, that they define regular contact twistor lines in the patch U+ and they are
consistent with the transition functions (3.25). But first we need to evaluate their derivatives.
As usual, the situation is complicated by the fact that they are written as functions of coordinates
in the patch U+, whereas in the contact transformations they are considered as functions of ξ�

[+]

and ξ̃
[i]
� .

Let us start by evaluating the derivative of H [+i] w.r.t. �+
γm

. After integrating by parts in
the second and fourth terms, one finds

2i
∂H [+i]

∂�+
γm

= nγm

4π2
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[(
∂�γj

(�)

∂�+
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(�)

∂�
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− (
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(
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γj

)) ( ∂

∂�+
γm

+ δj,m

∂
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)]
log
(
1 − e−2π i(�−�γj

(�))
)
. (C.1)

8 The additional contribution from the poles z = 0, ∞ of the integration measure in (2.26) is canceled by a similar
one from the first term.
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Using equation (3.33) for �γi
(�), it is easy to obtain that the very last term is equal to

1

32π4

∑
j �=k

nγj
nγk

〈γj , γk〉
∫ −i∞

0

Dγj
�

�+
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− �
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� − �+
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�′

×
(

∂

∂�+
γm

+ δj,m

∂

∂�′

)
log
(
1 − e−2π i(�′−�γk

(�′))). (C.2)

On the other hand, the combination of the third and fourth terms gives

1

32π4

∑
j �=k

nγj
nγk

〈γj , γk〉
{

1

4
Ej
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d�′

�+
γk
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×
[

δj,m�′(�+
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− �
)

+ δk,m�2

�+
γk

� − �+
γj

�′ − �
∂

∂�+
γm

]
log
(
1 − e−2π i(�′−�γk

(�′)))} . (C.3)

Combining these two contributions and using equation (3.34) for Ej , one arrives at the final
result

2i
∂H [+i]

∂�+
γm

= 1

8π2

∑
k

nγk

⎛
⎝δk,m +

1

8π2

∑
j

nγj
qj,�

∂Sj

∂�+
γm

p�
k

⎞
⎠Sk. (C.4)

One immediately concludes that it leads to

2i∂ξ�
[+]

H [+i] = F�

(
ξ�

[+]

)
+

1

8π2

∑
j

nγj
qj,�Sj , ∂ξ̃

[i]
�

H [+i] = 1

8π2

∑
j

nγj
p�

j Sj . (C.5)

Now it is easy to verify that the contact transformation generated by H [+i] removes all
singularities of the contact twistor lines near the north pole. First, the regularity of ξ�

[+], ξ̃
[+]
�

trivially follows from the fact that their instanton contributions depend only on the combination
Jγi

+Sj , which is regular around z = 0. The analysis of α[+] is as usual a bit more complicated.
It can be represented as

4iα[+] = α̃[i] − 2i
[
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�
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∑
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∑
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0

Dγj
�

�+
γj

− �
�γj

(�). (C.6)

Note that in the fourth term one can safely replace �+
γj

by �γj
. Then the discontinuities of

this term arising due to the branch cuts of �γj
cancel those of the last term in (C.6), whereas

the discontinuities coming from the cuts of Sj cancel those of the last two terms in α̃[i] (3.32).
At the same time the third term in (C.6) removes the singularities of the fourth term in (3.32).
Since the second term is regular, we conclude that α[+] does not have branch-cut singularities
in U+ except the term coming from the anomalous dimension. Besides, it is easy to show that
all simple poles at z = 0 also cancel each other. Thus, the contact twistor line α[+] satisfies all
regularity conditions.

Finally, let us check that the proposed form of H [+i] is consistent with the transition
functions through the BPS rays (3.25). The latter can be obtained from the composition law
(3.20). The term linear in the transition functions gives

i

2

⎛
⎝Gγi

− 1

2
qi,�p�

i

(
G′

γi

)2
+

G′
γi

16π2

∑
j

nγj

(
qi,�p�

j + qj,�p�
i

)
Sj +

1

2
G′

γi
�γi

(
�+

γi

)⎞⎠ , (C.7)
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where Si denotes the branch of the function (3.37) obtained by analytical continuation from
the patch Ui clockwise. The quadratic term is evaluated using (C.5) and leads to

− i

16π2
qi,�G′

γi

∑
j

nγj
p�

j Sj . (C.8)

Altogether these contributions reproduce our initial starting point (3.25). This completes the
verification that (3.25) and (3.39) form a consistent set of transition functions.
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[9] Lindström U and Roček M 2008 Properties of Hyper-Kähler manifolds and their twistor spaces arXiv:0807.1366

[hep-th]
[10] Alexandrov S, Pioline B, Saueressig F and Vandoren S 2008 Linear perturbations of Hyper-Kähler metrics

arXiv:0806.4620 [hep-th]
[11] Alexandrov S, Pioline B, Saueressig F and Vandoren S 2008 Linear perturbations of quaternionic metrics

arXiv:0810.1675 [hep-th]
[12] LeBrun C 1989 Quaternion-Kähler manifolds and conformal geometry Math. Ann. 284 353–76
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